

Some Comments on the Energy Scale of the Pierre Auger Observatory

Ralph Engel, for the Pierre Auger Collaboration

Current status of all-particle flux

Energy scale uncertainty vs. all-particle flux (iv)

Good agreement between different experiments if energy is shifted

(Berezinsky, J. Phys. Conf. Ser., 2008)

Energy scale uncertainty vs. all-particle flux (ii)

Energy scale uncertainty vs. all-particle flux (iii)

Energy scale uncertainty vs. all-particle flux

Physics interpretation only possible if sys. uncertainty of flux will be reduced

Recap of energy assignment to showers

Method of constant intensity cuts

Model independent method for isotropic arrival direction distribution

In general energy-dependent function, within current statistics same shape

 $S_{38^\circ} = S(1000) / CIC(\theta)$

$$CIC(\theta) = 1 + ax + bx^{2}$$
$$x = \cos^{2}\theta - \cos^{2}38^{\circ}$$
$$a = 0.90 \pm 0.05$$
$$b = -1.26 \pm 0.21$$

Fluorescence-to-surface detector cross-calibration

Energy uncertainty from cross-calibration procedure:

- 7% at 10¹⁹ eV
- 15% at 10²⁰ eV

Will improve with increased hybrid statistics

With current statistics: no curvature required

 $a = (1.51 \pm 0.06(stat) \pm 0.12(syst)) \times 10^{17} \,\text{eV},$ $b = 1.07 \pm 0.01(stat) \pm 0.04(syst),$

(Auger, ICRC 2009)

Summary of sources of uncertainty: fluorescence energy

Uncertainty (%)	Source		
14	Absolute fluorescence yield		
10	Reconstruction of the longitudinal shower profile		
9	Absolute calibration of the fluorescence telescopes		
7	Aerosol optical depth		
5	Water vapour quenching		
4	Invisible energy Auger Observatory 200		
3	Wavelength dependent response		
1	Molecular optical depth		
1	Multiple scattering models		
22	Total		

Photon calibration	10 %
Fluorescence yield	6 %
Missing energy correction	5 %
Aerosol concentration	5 %
Mean energy loss estimate	10 %
Total	17 %

HiRes mono spectra 2008

Optical calibration of fluorescence telescopes

Construction:

- •2.5m dia, uniform light source
- Hard outer shell
- Diffusively reflecting liner
- Diffusively transmitting face
- Diffuser covers LED

==> ~2% uniformity of illumination at output surface

Outer shell: Laminated honeycomb Al skin

н

Optical calibration of fluorescence telescopes

Total	9.5%
Camera Response Variations	4.0%
(currents, FADC traces, etc.)	2.3%
Signal readouts	
Drum non-uniformities	2.5%
Wavelength distribution effects	2.5%
(at FD and in lab)	1.3%
Reflections	
(alignments, areas, etc.)	1.8%
Geometrical	
Temperature effects	3.5%
NIST calibration[2]	1.5%
calibrated Si photodiode	6.0%
Drum intensity transfer to	

Light transmission and attenuation (i)

Vertical beam

absolute: 10% relative: 2% direction: 0.04°

Steered beam

absolute:	12%
relative:	3%
direction:	0.2°

```
(Fick et al. JINST 1 (2006) P11003)
```


Light transmission and attenuation (ii)

Light transmission and attenuation (iii)

Energy deposit vs. shower size (i)

Energy deposit vs. shower size (ii)

energy and particle independent function

Reconstruction based on energy deposit

Fluorescence yield calculation

Kakimoto et al. 1996 & Bunner 1967

$$\varepsilon = \frac{(dE_{\rm dep}^{\rm tot}/dX)}{(dE_{\rm dep}^{\rm tot}/dX)_{1.4 \text{ MeV}}} \cdot \rho \left\{ \frac{A_1}{1 + \rho B_1 \sqrt{T}} + \frac{A_2}{1 + \rho B_2 \sqrt{T}} \right\}$$

Nagano et al. 2004

(17 wavelength bands)

$$\varepsilon = \frac{(dE_{\rm dep}^{\rm tot}/dX)}{(dE_{\rm dep}^{\rm tot}/dX)_{0.85 \,\,{\rm MeV}}} \cdot \left\{\frac{\rho A_{\lambda}}{1 + \rho B_{\lambda}\sqrt{T}}\right\}$$

AIRFLY et al. 2007

34 wavelength bands, normalized to 337.1nm of Nagano

$$Y_{\lambda}(P,T) = Y_{337}(P_0,T_0) \cdot I_{\lambda}(P_0,T_0) \times \frac{1 + \frac{P_0}{P'(\lambda,T_0)}}{1 + \frac{P_0}{P'(\lambda,T_0)\sqrt{T/T_0}}}$$

Plans: extension of FY calculation to include water vapor quenching and temperature effects

Impact of wavelength dependence of efficiency

(Unger & Keilhauer, 6th Fluorescence yield workshop 2008 & ICRC 2009)

Impact of fluorescence yield model

Attention: direct comparison of Auger and HiRes fluorescence yields not possible

Differences small if energy deposit is used in calculation

Calorimetric vs. total shower energy

Correction of spectrum for energy resolution

Forward-folding:

steep parts have have to be corrected more than flat parts

Auger: energy scales of FD and SD different

Procedure

- Simulation of 400 showers with reconstructed geometry
- Proton or iron primaries
- SD simulation for best long. profile
- Reconstruction of hybrid event

Results

- Muon deficit found in both proton and iron like showers
- Showers with same X_{max} show 10-15% variation of S(1000)

Auger: comparison of results

Results of different methods consistent

- shift of energy scale expected
- muon deficit in simulation even with shifted energy scale

But: All results depend directly or indirectly on simulation of em. component

Telescope Array: similar energy scale difference

(TA Collab., Thomson, ICHEP 2010)

Status of energy scale uncertainty

- Typical uncertainty scale 20%, but sources different (consistency?)
- Experiments agree within systematic uncertainties
- Many small differences, but no obvious source for a 20% energy shift
- What about the different energy scales of SD and FD ?
- Are we happy with this status ?
- How to make progress ?

Proposal: cross-calibration of Auger and TA

Electronically stabilised 2.5 kg without payload Payloads up to ~1 kg Powered by LiPo battery (4S) 20 min flight time 40 km/h rising speed

(Diploma theses Maria Radosz, Julia Parrisius, Felix Werner)

Calibrated and stabilized light source

12 UV-LEDs with silicone lenses Dodecahedron (ABS) as body Tyvek coating of body \varnothing 10 cm diffuser (polystyrene)

Unc	ertainty (%)	Source		
	2.0	Reflections and geometry		
	2.0	Inaccuracy of electrometer		
	1.5	Responsivity and active area of photodiode (from NIST)		
	1.0	Intensity stability of the light source		
	3.4	Total		

Roithner-Laser H2A1-H375

